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We study the modules RU which are injective over their endomorphism ring and we apply the 

results obtained to faithfully balanced bimodules and rings with Morita duality. We also get 

necessary and sufficient conditions, in terms of the left R-module structure, for U to be an injec- 

tive cogenerator over its endomorphism ring. 

1. Introduction 

It is well known that a faithfully balanced bimodule RUT (i.e., such that 

R =End(,U) and T= End(,U)) induces a Morita duality between R and T pre- 

cisely when RU and U, are injective cogenerators. An asymmetrical generalization 

of Morita duality has been given by Zelmanowitz and Jansen in [23] by considering 

‘duality R-modules’, i.e., bimodules RUT such that RU is a finitely cogenerated 

linearly compact quasi-injective self-cogenerator and T is naturally isomorphic to 

End(&). As it has been remarked in [23], these modules can be regarded as 

‘l/2-Morita duality modules’, because RUT is a Morita duality module if and only 

if it is a duality R-module and a (right) duality S-module. However, if RU is a 

module and T= End(,U), then U, can be an injective cogenerator without RU be- 

ing finitely cogenerated nor linearly compact nor a self-cogenerator and thus the 

question arises of giving necessary and sufficient conditions on RU for UT to be an 

injective cogenerator. This is done in Theorem 10, where the duality between sub- 

categories of R-Mod and Mod-T induced by the contravariant functors Hom(-, U) 
is also used to characterize these modules. 

A key result for this study is the characterization of the modules RU which are 

injective over its endomorphism ring which, following a well established use for pro- 

perties over the endomorphism ring of a module, will be called counterinjective 
modules. This is done in Theorem 2 and the results obtained are applied to the sym- 

metrical situation obtained by considering a faithfully balanced bimodule RUT such 

that RU and U, are injective. Unlike what happens with the condition of being a 

cogenerator, this is not enough for RUT to be a Morita duality module but gives a 
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Morita duality (in the sense of Colby and Fuller [3]) between the quotient categories 

of R-Mod and Mod-T modulo the torsion theories cogenerated by RU and 17,. Us- 

ing this approach we show that R has a left Morita duality when, in addition to re- 

quiring that RU and Ur are injective modules with RUT faithfully balanced, we 

assume that the class of modules of U-dominant dimension ~2 is closed under 

direct unions. If some additional finiteness conditions are added, then we get results 

which extend to faithfully balanced bimodules some of the usual characterizations 

of quasi-Frobenius rings. For instance, a module RU is _Z-injective (i.e., every 

direct sum of copies of RU is injective) if and only if the ACC holds on the set 

AR(U) of left ideals of R that are annihilators of subsets of U. Then, RU and U, 

become artinian cogenerators, assuming _Z-injectivity of RU and U,. If we start 

with a quasi-injective module and assume the dual condition of d-quasi-injectivity 

(i.e., AR(U) satisfies the DCC which by the Teply-Miller theorem implies the 

ACC), with T= End(,U) and B= Biend(,U), then T is a right artinian ring with a 

right Morita duality with B induced by &J7 if and only if RU has the DCC on U- 

closed submodules and RU cogenerates all the cokernels of homomorphisms of the 

form U+ U”. Furthermore, if the ring R is commutative, then the DCC on closed 

submodules can be replaced by the condition of RU being finite-dimensional. In 

view of the fact that a noetherian d-quasi-injective module always has DCC on clos- 

ed submodules, this gives some information on the structure of noetherian d-quasi- 

injective modules which had been posed by Faith in [6]. If the cogenerating condi- 

tion of RU expressed above does not hold, then gU7 is not necessarily a Morita 

duality module but T still has a right Morita duality. 

2. Definitions and notation 

Throughout this paper R denotes an associative ring with identity and R-Mod the 

category of left R-modules. If U is a module, then we will say that a module X is 

(finitely) U-generated (resp. U-cogenerated) if it is a quotient (resp. a submodule) 

of a (finite) direct sum (resp. direct product) of copies of CT. We recall that a 

module U is quasi-injective if, for every submodule X of U, the canonical homo- 

morphism Hom,(U, U) -+ Hom,(X, U) is an epimorphism. We also recall that a 

module M is called FP-injective (resp. semi-injective) if Ext(F, M) = 0 for every 

finitely presented (resp. finitely presented cyclic) module F. 

An R-module X is called a d-module when R satisfies the descending chain condi- 

tion (DCC) on annihilators of subsets of X. If X is, furthermore, injective or quasi- 

injective, then Xis said to be a d-injective or a d-quasi-injective module. The ascen- 

ding chain condition shall be abbreviated by ACC. 

If T= End(,U), then RUT is a bimodule and the U-dual functors Hom,(-, U) 

and Hom,(-, U) will be denoted, as usual, by ( )*. The evaluation maps yield 

natural transformations @ : lR_Mod --t ( )** and @ : lhlod_r+ ( )**. A module X (in 

R-Mod or in Mod-T) is U-cogenerated precisely when ex is a monomorphism and 
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if Gx is an isomorphism, X is said to be U-reflexive. X is called U-dense when for 

each h EX** and each finite family fi, . . . , f, E X*, there exists an XE X such that 

h(fi)=fi(x) for i= 1, . . . . n [21, p. 4311. 

If X and U are R-modules, a submodule Z of X will be called (finitely) U-closed 

when X/Z is (finitely) U-cogenerated. This means that Z is closed in the Galois con- 

nection between submodules of X and submodules of Hom,(X, U) defined by the 

usual annihilator mappings [ 1, Proposition 3.51. Thus if we denote, as usual, for 

submodules Z of X and L of X*, ax*(Z) = (fe X* 1 f(z) =0 for each z~Z} and 

&(L)={xEXIf(X)=O f or each f E L}, then Z is U-closed precisely when Z = 

&ex*(Z) (=R(Z), for short). Similarly, L is U-closed in X* when L =,z&$(L) = 
J(L). An important role in our development will be played by the following class 

of modules: 

Definition. Let RU be a left R-module and T=End(,U). RU will be called 

counterinjecive when Ur is an injective module. 

We refere the reader to [2] and [21] for all the ring and module-theoretic notions 

used in the text. 

3. Counterinjective modules 

Let RU be a left R-module. By [22, Statz 1.81 and [5, Theorem 41, if T= 
End(,U), then U, is FP-injective (resp. semi-injective) if and only if RU co- 
generates all cokernels of morphisms Urn + U” (with m = 1). We want to give 

a characterization of when RU is counterinjective. For this, if X is a left R-module 

we will say that X is U-linearly compact when each finitely solvable system of con- 

gruences of the form x=xi (mod XJ, with the Xi U-closed submodules of X, is 

solvable. Of course, if every submodule of X is U-closed, this concept reduces to 

that of a linearly compact module (in the discrete topology). As in [21, 29.71, the 

U-linearly compact modules can be characterized in the following way: 

Proposition 1. Let RX and RU be left R-modules. Then the following conditions 
are equivalent : 

(i) X is U-linearly compact. 
(ii) Each finitely solvable system of congruences XEXi (mod Xii), where the Xi 

are finitely U-closed submodules of U is solvable. 
(iii) If {X1}t is an inverse system of (finitely) U-closed submodules of X, then 

l@{X/X,} is canonically isomorphic to X/n Xi. 

Proof. (i) + (iii). If {Xi} is an inverse system of U-closed submodules of X, one 

gets an exact sequence of inverse systems: 
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o-x;~x~x/x;-0 

and, taking inverse limits, an exact sequence in R-Mod: 
limp, 

0-n&-xx l@lX/X 

An element of Ii@ X/X, is of the form (xi + Xi) E n X/Xi, satisfying the condition 

that xj -Xi E Xi for XJ c Xl. This element defines a system of congruences X~xi 

(mod Xi) which is, obviously, finitely solvable and hence solvable by hypothesis. 

Then, if z is a solution, we have that (x;+XI)=(l@Ri)(z) and so li@rp, is an 

epimorphism, proving (iii). 

(iii) 3 (ii) Assume that (iii) holds for finitely closed submodules of X. Notice also 

that to prove (ii) we may assume, replacing the modules Xi corresponding to the 

system X=X; (mod Xi) by their finite intersections, that we have a finitely solvable 

system x=x; (mod Xi) where the {X,}, form an inverse system of finitely closed 

submodules of X. We thus have an exact sequence 0 + n Xl + X+ Ii&r X/X, + 0. 

Then (Xi + Xi)i is clearly an element of li2 X/X, and from the exactness of the 

above sequence it follows that the system x=x; (mod Xi) is solvable. 

(ii) * (i) Let x=x; (mod X,) be a finitely solvable system with each Xi closed. 

Then Xi=&(Xj), with each I a right T-submodule of X*=Hom,(X, U). Let 

k(Xi) = C Z;,, where, for each in I, Zi, ranges over the set of finitely generated T- 
submodules of I and the sum is directed. Then, Xi=t( C Z,) = n&Z,,), where 

{f?(Zik)}k is an inverse system of finitely closed submodules of X, for each i ~1. 

Calling Xi, =&ZJ and considering the system of congruences XExik (mod Xik)> 

where we set Xi= Xi~ for each index ik, we see that this system is finitely solvable 

and hence solvable by (ii). This clearly implies that the original system XGXi 

(mod Xi) is solvable and thus the proof is complete. 0 

We can now give a criterion for the counterinjectivity of RU. 

Theorem 2. A left R-module RU is counterinjective if and only if the following 
conditions hold: 

(i) Every cokernel of a homomorphism of the form Urn --t U” (or U+ U”> is U- 
cogenerated, equivalently U, is FP-injective. 

(ii) U is U-linearly compact. 

Proof. As it has been already remarked, we know from results of Wtirfel and 

Damiano that U, is FP-injective (resp. semi-injective) if and only if condition (i) 

(resp. condition (i) for m = 1) holds. Thus we have to show that, in the presence of 

this condition, U, is injective if and only if (ii) is satisfied. 

Assume first that U, is injective and, using Proposition 2, consider an inverse 

system (U* U,}, of U-cogenerated quotients of U. Denoting, as usual, by * the 

U-dual functors, we have, as a consequence of the injectivity of U,, commutative 

diagrams with exact rows, 
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@” is an isomorphism and, since each Ui is U-torsionless, &,, is a monomorphism 

for each in 1. Therefore we see that &,, is an isomorphism (i.e., each Uj is U- 

reflexive), so that we can identify pI** with p,. Then, using the facts that the p.? 

form a direct system of monomorphisms (corresponding to right ideals of T) and 

the functor Hom,(-, U) takes direct limits into inverse limits, we get that li&np,= 

li&np,?* = (li$p,*)*. Since the direct limit functor is exact we get that l$pT is a 

monomorphism and hence li&np, is an epimorphism, which proves (ii). 

Conversely, if conditions (i) and (ii) hold, we already know that U, is FP- 

injective (or semi-injective). Let then J be a right ideal of T (with inclusionj : J-, T) 

and {Ji}l the direct system of all the finitely generated right ideals contained in J, 

with canonical inclusions jj : Ji --f T. From the fact that U, is semi-injective it 

follows that the canonical homomorphisms U+ Ji* are epimorphisms. Thus we 

have an inverse system {U-+ JF}[ where the JF are U-cogenerated quotients of U. 

Using (ii) and Proposition 1 we conclude that Ii@ j: : U-t Ii@ JF is also an epimor- 

phism. But then we have that li_m jF= (li$ ji)* =j* and hence UT is injective. 0 

Remarks. In [lo] a module U over a commutative ring is called semi-compact when 

each finitely solvable system x=x; (mod Ui) is solvable, whenever the submodules 

Ui are annihilators of ideals of R. Since these annihilators are obviously U-closed 

submodules of U, we see that if U is U-linearly compact, then it is also semi- 

compact and hence the fact that any injective module over a commutative ring is 

semi-compact [lo, Proposition 21 is contained in Theorem 2. 

Using Theorem 2 one can recover as easy corollaries a few results scattered in the 

literature. We mention, among them, [4, Theorem 2.81 which asserts that if RU is 

an injective artinian module which cogenerates an exact torsion theory of R-Mod, 

then RU is counterinjective. In fact, as we will see later on, U, is, actually, an injec- 

tive cogenerator in this case. Other straightforward consequences of Theorem 2 are 

[13, Corollary 1, p. 119; 18, Corollary 2, p. 342; 9, Proposition 21 and the last 

equivalence of [14, Theorem]. Also, it is easy to check that if (I= @ Uj is an in- 

finite direct sum of nonzero modules, then U is not U-linearly compact and hence 

it cannot be counterinjective [17, Theorem 11. 

It is easy to give examples of counterinjective modules which are not linearly com- 

pact (the most obvious one is &!). Even a faithfully balanced injective and 

counterinjective module need not be linearly compact. For instance, a Von 

Neumann regular ring R is always (left and right) self-FP-injective and hence it 

follows from Theorem 2 that it is right self-injective if and only if RR is R-linearly 
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compact. However, a nonsemisimple left and right self-injective regular ring is not 

left nor right linearly compact. 

Corollary 3. Let RUT be a faithfully balanced bimodule such that nU is a co- 
generator and Ur is injective. Then R has a left Morita duality. 

Proof. From Theorem 2 it follows that RU is a linearly compact cogenerator and 

thus it is clear that the minimal cogenerator of R-Mod is also linearly compact. On 

the other hand, R is left linearly compact by [13, Corollary 2, p. 1191 and so it has 

a left Morita duality by [12]. 0 

Next, we study the duality defined by a counterinjective module. Motivated by 

Proposition 2, we will say that an object X of a Grothendieck category g is linearly 

compact when, for each inverse system of epimorphisms {pi : X+X,}, in g, the 

canonical morphism li@ pi : X+ li&n Xi is also an epimorphism. This concept will 

be applied in the case of the quotient category ‘??Zu of R-Mod modulo the (her- 

editary) torsion theory cogenerated by an injective module RU (see [19] for the 

definition). VZu can be identified with the full subcategory of R-Mod whose objects 

are all the modules X such that U-dom dim XL 2, i.e., such that there exists an 

exact sequence 0 -+X+X, --+X2, in which X, and X, are direct products of copies 

of &J. 

Theorem 4. Let ,&J be a module and T= End(RU). Then the following statements 
hold: 

(i) If X is a U-cogenerated U-linearly compact left R-module such that the 
cokernel of each homomorphism X --f U” is U-cogenerated, then X is U-reflexive. 
If, furthermore, RU is counterinjective, then the converse holds. 

(ii) If RU is injective and counterinjective, then the U-reflexive R-modules are 
precisely the U-linearly compact modules X of 6’” such that each epimorphism 
X-t Yin ?Zo is an epimorphism in R-Mod. In particular, they are linearly compact 
objects of F?o. In this case, the class of U-reflexive modules is closed under sub- 
objects and quotient objects in go. 

Proof. (i) Let X be a U-linearly compact U-cogenerated module such that each 

homomorphism of the form X+ U” has U-cogenerated cokernel. In order to show 

that RX is U-reflexive, it is enough to prove that the canonical homomorphism 

Q~: X+X** is an epimorphism. Arguing as in the proof of [21, 47.81, we see that 

if {Li}, is the family of all the finitely generated right T-submodules of X*, then 

{&Li)}t is also a direct system of submodules of X* and X*zl&rJ(Li). Further- 

more, &(Li) 2 Hom,(X/!(L,), U) = (X/e(Li))* and so, if we consider the inverse 

system of homomorphisms X** -+ (X/P(Li))** we get that X**Z (li@(X/!(Li))*)* G 

lim(X/e(Li))**. On the other hand, each X/t’(LJ is U-dense by [21, 47.71 and since t 
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it is, by definition, finitely U-cogenerated, it follows from [21, 47.61 that X/~(Li) 

is, in fact, U-reflexive. Now, the proof can be completed as in [21, 47.81, for, using 

the fact that X is U-linearly compact, we get a commutative diagram, 

g 
X - lim X/&L+) e 

@X ! q = ! 
P 

X ** - lim(X/&)) ** 
P + 

in which g is an epimorphism and p and q are isomorphisms, so that Qx is also an 

epimorphism. 

Conversely, assume that RU is counterinjective and X is U-reflexive. Since U” is 

obviously U-reflexive, we see that the cokernel of each homomorphism X-t U” is 

U-reflexive and hence U-cogenerated. Moreover, if {pi : X-t X,}[ is an inverse 

system with the Xi U-cogenerated quotients of X, then we get a direct system in 

Mod-T {p; : X; +X*}, which gives a monomorphism limp,? : lim Xi* + X*. Taking 

U-duals and bearing in mind that the Ui are U-reflexiye, we & an epimorphism 

Thus we may identify the epimorphism (li$pjc)* with l@p, and so we see that X 

is U-linearly compact. 

(ii) First, observe that the image of the functor Hom,(-, U) is contained in %u 

and hence it follows from (i) that if X is U-reflexive, then X is a U-linearly compact 

module of ‘?Zu. Now, if p : X+ Y is an epimorphism in gr,, , then Imp is also reflex- 

ive and hence belongs to gu, so that p is, in fact, an epimorphism of R-Mod. The 

converse is also clear, for if X is a U-linearly compact module of gu such that each 

epimorphism X-t Y in ‘&?,, is an epimorphism in R-Mod, then the cokernel of 

f: X+ U” in g” coincides with the cokernel in R-Mod and is U-cogenerated, so 

that X is U-reflexive by (i). 

On the other hand, if X is a U-reflexive R-module and {pi : X -+ Xi), an inverse 

system of epimorphisms in gu, then we see that, in fact, these are epimorphisms 

in R-Mod and the Xi are U-cogenerated. Since the inclusion functor of %” in R- 

Mod has a left adjoint, it preserves inverse limits and hence it is clear that X is a 

linearly compact object of g”. 

Finally, observe that the subobjects in VZu of a reflexive module X are precisely 

the U-closed submodules of X, which are obviously U-reflexive. On the other hand, 

we have seen that the quotients of X in E?” are U-cogenerated quotients of X in R- 

Mod, so that they are also U-reflexive. 0 

Remarks. Observe that, in the hypotheses of Theorem 4(ii), i.e., for an injective 

and counterinjective module RU, if it is assumed that RUT is, furthermore, a 
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faithfully balanced bimodule, then the situation is made completely symmetric. In 

this case, if we let &Z+, be the quotient category of Mod-T modulo the torsion theory 

cogenerated by U,, we see that R and S are reflexive generators of %u and !SDu 

respectively, and so Horn&, U) and Hom,(-, U) define a Morita duality between 

+J?~ and gDu in the sense of [3]. As in the case of Morita dualities for categories of 

modules, the reflexive objects are linearly compact in ?Zu and ‘&,, . If, furthermore, 

g” and g’(i are exact subcategories of R-Mod and Mod-T, then it is clear that the 

converse also holds. An example of this situation is obtained by considering a (Von 

Neumann) regular left and right self-injective ring and taking RUT=RRR. The 

associated quotient categories are, in this case, the categories of nonsingular injec- 

tive modules which, as it is well known, are exact subcategories of R-Mod and Mod- 
R [19, Proposition 1X.2.121. Therefore, the dual functors Hom,(-, R) induce a 

duality between the subcategories of linearly compact objects of these categories. 

Observe that, unlike the case of Morita dualities, R need not be semiperfect (nor 

finite-dimensional). However, if we add some additional conditions, the situation 

improves and we have: 

Theorem 5. Let RU be an injective and counterinjective module. If every direct 
sum of copies of RU has U-dom dim 22, then T is semiperfect. If U is faithfully 
balanced and the class of modules of U-dom dim 2 2 is closed under direct unions, 
then R has a Ieft Morita duality. 

Proof. In order to show that T is semiperfect, we have to prove that RU is a finite- 

dimensional module (see, e.g. [19, Proposition XIV.1.71). Let {Y} be an indepen- 

dent family of submodules of RU. Then, replacing each Y, by its U-closure if 

necessary, we may assume that the Y, are, in fact, closed submodules of U. Choose 

X,E Yj arbitrary for each i EI and set Xj= aj+; q. Then, using the facts that U- 
dom dim(Y) r 2 for each i E I (because each I$ is a closed submodule of RU) and 

U-dom dim(U(K))>2 for each set K (by hypothesis), it is not difficult to see that 

U-dom dim(&)22 for each i E I (this is, essentially, a part of [19, Exercise 

XII. 1 .l]). Thus it is clear that each Xi is also a U-closed submodule of U. Since 

by Theorem 2 RU is rationally linearly compact and, clearly, the system of con- 

gruences x=xi (mod Xi) is finitely solvable, we have that it is solvable. Therefore, 

the system has a solution in @ Y and this implies that there can be only a finite 

number of nonzero xi, so that RU is finite-dimensional. 

Assume now that R = End(U,) and the class of R-modules of U-dom dim 2 2 is 

closed under direct unions (of submodules of any given module ). Let J be a left 

ideal of R and write J= C J,, where the Ji are the finitely generated left ideals con- 

tained in J and the union is directed. It is easily checked that, since R is U-reflexive 

by hypothesis, each finitely generated left ideal of R is U-reflexive and so we have 

that U-dom dim(Ji) 2 2. Thus it follows from our hypotheses that U-dom dim(J) L 

2. But, since U-dom dim(R) 12, this clearly implies that J is a U-closed left ideal 

of R, so that each cyclic left R-module is cogenerated by RU and hence RU is a 
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cogenerator. As U, is injective, it follows from Corollary 3 that R has a left Morita 

duality. 0 

From the proof of the above theorem we get the following characterization of 

Morita duality bimodules: A bimodule RUT is a Morita duality module if and only 

if it is faithfully balanced, injective and counterinjective, and the classes of modules 

of U-dom dim I 2 (in R-Mod and in Mod-T) are closed under direct unions. The 

following result extends [6, Corollary 10.141: 

Corollary 6. Let RUT be a faithfully balanced bimodule such that RU is Sinjective 
(resp. A-injective) and U, is injective. Then R is a left noetherian (resp. artinian) 
ring with a left Morita duality. 

Proof. As it is well known, RU Z-injective is equivalent to the ACC on U-closed 

left ideals of R. By [19, Proposition X111.2.4 and X111.1.21, this implies that the 

class of modules of U-dom dim 22 is closed under direct unions and so we have 

by the proof of the above theorem that RU is a linearly compact cogenerator and 

R has a left Morita duality. Furthermore, since RU is a cogenerator, it is also clear 

that R is actually left noetherian. The proof of the parenthetical case proceeds in 

a similar way using the fact that by the Teply-Miller theorem [6, Theorem 7.11 any 

A-injective module is C-injective. 0 

If we strengthen a little bit the hypotheses of the above corollary by making them 

symmetric, we get the following characterization of faithfully balanced C-injective 

bimodules: 

Corollary 7. Let RUT be a faithfully balanced bimodule. Then the following condi- 
tions are equivalent: 

(i) RU and U, are Z-injective. 
(ii) RU and U, are artinian injective cogenerators. 
In this case RU7 induces a Morita duality between the left noetherian ring R and 

the right noetherian ring T. 

Proof. By Corollary 6 and its proof, if (i) holds, RU and UT are linearly compact 

cogenerators and R (resp. T) is left (right) noetherian. Since there is an order- 

inverting bijective correspondence between (U-closed) submodules of RU (U,) and 

(U-closed) right (left) ideals of T(R) [ 1, Proposition 4.31 we see that RU and U, are 

artinian. The converse and the last statement are clear. c7 

The ring R in the above corollary need not be left artinian (e.g., if R is a non- 

artinian commutative local noetherian complete ring and U the minimal co- 

generator) but if we strengthen our conditions still a little bit more, we get 

Corollary 8. Let RUT be a faithfully balanced bimodule. The following conditions 
are equivalent : 
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(i) RU is A-injective and U, is _Z-injective. 
(ii) RU and Ur are injective cogenerators of finite length. 
In this case R is left artinian, T is right artinian and kUr induces a Morita duality 

between R and T. 

Proof. By Corollary 7 , RI/ and U, are artinian injective cogenerators. Further- 

more, since RU is A-injective, Ur is noetherian [6, Corollary 5.41 and hence of 

finite length. This in turn implies that R = End(&) is left artinian and hence that 

RU has finite length, so that the result is clear. 0 

4. Quasi-injective modules 

In the remainder of the paper we will focus on the dualities induced by quasi- 

injective modules (see [l l] for a comprehensive study of the topological dualities 

associated with a quasi-injective self-cogenerator). 

We are now going to consider a situation which is more general than that of Cor- 

ollary 8 but where we can still ensure that T is a right artinian ring with a right 

Morita duality. 

Theorem 9. Let RU be a quasi-injective module and T=End(,U). Then the 
following conditions are equivalent: 

(i) RU is a A-module with DCC on U-closed submodules. 
(ii) RU is a A-module and has a finitely generated submodule X such that 

Ann,(X) = 0. 

(iii) RU has the DCC on U-closed submodules and U, is finitely generated. 
(iv) T is right noetherian and U, is finitely generated. 
(v) T is a right artinian ring with a right Morita duality and Ur is a finitely 

generated cogenerator. 
If these conditions hold, T has a right Morita duality with B = Biend(,U) induc- 

ed by &Jr if and only if, either U, is quasi-injective or KU cogenerates all the 
cokernels of homomorphisms U+ U”. On the other hand, if R is commutative, 
then conditions (i)-(v) are equivalent to RU being a finite-dimensional A-quasi- 
injective module. 

Proof. (i) ti (ii) Let R = R/Ann,(U). By [6, Corollary 5.6A], RLJ is an injec- 

tive module and using the Teply-Miller theorem (see [l, Theorem 7.1 l]), we see 

that RU (and hence RU) has the ACC on U-closed submodules. By [I, Proposi- 

tion 6.11, this implies that RU has a finitely generated R-submodule X such that 

HomR (U/X, U) = 0. This clearly implies that X is a finitely generated R-submodule 

of U such that Ann,(X) = 0. 

(ii) j (iii) Since R has the DCC on U-closed left ideals, Ur is noetherian (see, 
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e.g. [l, Corollary 4.31). On the other hand, since there exists a finitely generated R- 

submodule X of U such that HomR(U/X, U) = 0, it follows from [ 1, Corollary 6.41 

that RU has the DCC on U-closed submodules. 

(iii) j (iv) This follows from [l, Corollary 4.31. 

(iv) +. (v) By [6, Corollary 7.51, T has nilpotent radical. Since T is semiperfect 

(for RU is finite-dimensional) we have that T is right artinian (see [8, Corollary 

1.51). Now, each finitely generated right T-module 2 is finitely presented and hence 

U-reflexive, so that, in particular, it is U-cogenerated. This implies that if Cis a sim- 

ple right T-module and MC E(C) a nonzero finitely generated submodule of its in- 

jective hull, then h4 embeds in U,. Since U, has finite length we see that E(C) has 

ACC on finitely generated submodules and hence it is a noetherian right T-module. 

Therefore E(C) embeds in U, and so U, is a finitely generated cogenerator. Fur- 

thermore, it is clear that T has a right Morita duality. 

(v) = (i) This is again a straightforward consequence of [l, Corollary 4.31. 

Observe now that T has a right Morita duality with B, induced by &, if and 

only if U, is, furthermore, an injective module. Since T embeds in a finite direct 

product of copies of U,, this is, in turn, equivalent to U, being quasi-injective. On 

the other hand, since T is right artinian, U, is injective if and only if it is FP- 

injective, i.e., if and only if RU cogenerates the cokernels of homomorphisms of 

the form U+ U”. 

Finally, we examine the case in which R is commutative. First, it is clear that if 

RU satisfies the equivalent conditions (i)-(v), then RU is finite-dimensional, so that 

all that remains to be proved is that if RU is a finite-dimensional d-quasi-injective 

module, then RU has the DCC on U-closed submodules. Observe that, by replacing 

R by R if necessary, we may assume that RU is a finite-dimensional A-injective 

module. By [ 1, Theorem 11.341, such a module has a decomposition U = @ UF, 

with riZ 1 and such that U;EEE(R/pi)y where {pr,pz, . . ..p.} are the primes as- 

sociated to U and R, is an artinian ring for each i = 1, . . . , n. Using [l, Proposition 

11.81, we only have to show that each E(R/p;) has the DCC on U-closed sub- 

modules. Let then p = pi (say). Then E(R/p) is an injective envelope of the unique 

simple R,-module and it follows from [15, Theorem 51 that E(R/p) has finite length 

as R,-module. Thus it will suffice to show that each U-closed submodule of E(R/p) 

is, in fact, an R,-submodule. To see this, let O#xeE(R/p). Then R,x is an R,- 

module of finite length and so we have as in the proof of [20, Theorem 21 that 

pkx = 0 for some k> 1. Since Ann,(x) is a proper U-closed ideal of R, it is clear that 

there exists a maximal U-closed ideal q of R such that AnnR(x) c q and, obviously, 

q must be a prime associated to U. Then we get that pk c q and this implies that 

p c q. But from [ 1, 11.261 it follows that all the primes associated to U are minimal 

among the U-closed prime ideals of R and hence we must have that p = q, so that 

p is the unique prime associated to U which contains Ann,(x). Let now t E R such 

that t $p. If we denote by (Rx)~ the U-closure of the R-module Rx in E(R/p), then 

tC’xE (Rx)~ if and only if the ideal (Rx : t-lx) belongs to the Gabriel filter of R 

defined by U [ 1, p. 501, i.e., if and only if (Rx : t-lx) c pi for i = 1, . . . , n. But, clear- 
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ly, we have that RI + AnnR(x) G (Rx : t-lx) and this implies that the condition in- 

deed holds. Thus (Rx)~ is an R,-module and this ends the proof. 0 

Remarks. This result shows that the rings considered in [6, Corollary 6.4; 1, Pro- 

position 2.10; 8, Corollary 1.51 have a right Morita duality. A related result is [9, 

Theorem 31. 

We remark that, in the hypotheses of Theorem 9 (conditions (i)-(iv)), &IT does 

not always induce a Morita duality, for Ur is not necessarily injective. In [16] a 

finitely generated projective module RP is constructed over a quasi-Frobenius ring 

R, such that T=End(RP) is not QF. This module is clearly d-injective but is not 

injective over T. 

As we have already remarked, the duality R-modules RU of [23] have the proper- 

ty that U, is an injective cogenerator but the converse is not true. We now charac- 

terize the quasi-injective modules KU such that U, is an injective cogenerator. 

Theorem 10. Let RU be a quasi-injective module and T=End(RU). Then the 
folio wing conditions are equivalent: 

(i) U, is an injective cogenerator. 

(ii) RU satisfies the following conditions: 
(a) ,U cogenerates all the cokernels of homomorphisms of the form 
U+ U”, i.e. Ur is semi-injective. 
(b) RU is U-linearly compact. 
(c) The lattice of U-closed submodules of RU has the finite intersection 
property. 

(iii) Every cyclic right T-module and every U-cogenerated quotient of U are U- 
reflexive. 

Proof. The equivalence of conditions (i) and (ii) can be deduced from Theorem 2, 

together with [7, Theorem 1.51. However, we give a cyclic proof of the theorem 

which emphasizes the duality aspects and is independent from [7]. 

(i) =) (ii) Conditions (ii(a)) and (ii(b)) follow from (i) using Theorem 2. On the 

other hand, it is clear that, since U, is a cogenerator, all the right ideals of T are 

U-closed. They form a lattice which is anti-isomorphic to the lattice of U-closed sub- 

modules of U [l, Proposition 3.31 and hence it is clear that this lattice has the finite 

intersection property. 

(ii) j (iii) First we show that each right ideal J of T is U-closed, that is, that 

J=,,&(J). Let f E&(J), X= U/&(J) and p : U-+X the canonical projection. 

Then f factors in the form f =gop, with g : X + U. Consider the inverse system 

(X+ Xi}I, where for each finitely generated right ideal J, c J we define Kj =fu(.J,) 

and X;= U/K,. Since J= CI J, we have that e,(J) =Pr/( CI Ji) = n, &(.I,) = n, K; 
and, since U is U-linearly compact we get from Proposition 1 that li? X, = 

U/&(J) =X. Let now Ai= Ker(X-+ Xi) and K =g(A;). We have a commutative 

diagram with exact rows and columns, 
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0 - KergnA, - A, - vl: - 0 

I I I 
0 - Kerg 

g 
-X------+ Img-0 

O-N;-X-Zi-O 
I 

0 0 0 

Now, each Ni, being a submodule of X,, is finitely U-cogenerated, that is, each 

Ker gnAi is a (finitely) U-closed submodule of Ker g. On the other hand, Ker g is 

(finitely) U-closed in X and hence a (finitely) U-closed submodule of U. Since U is 

U-linearly compact, it is straightforward to see that Ker g is also U-linearly compact 

and from Proposition 1 it follows that li_mq, is an epimorphism. Thus, taking in- 

verse limits and observing that nAi = 0, we get a commutative diagram with exact 

rows and columns: 

0 

0 - Kerg -X- Img-0 

0 - 1imNi - + Ii&n Xi - 1% zj 

I I 

0 0 

which, using the Ker-Coker lemma, shows that n Vi = 0. On the other hand, if we 

set Yi = Xi @ Im g, for each i E I, then we have exact sequences CJ --t Y, + Zj + 0 and, 

since each Yi is finitely U-cogenerated, our hypothesis (ii(a)) implies that Zj is U- 

cogenerated. Then, the fact that Im g (= Im f) is U-closed in U (again by (ii(a))) im- 

plies that the I$ are closed submodules of U. By (ii(c)) the lattice of U-closed sub- 

modules of U has the finite intersection property and since the { Vi} are an inverse 

family of submodules we must have that q/i=0 for some iE I. This implies that g 

(and hence f) factors through the corresponding Xi and so f~a,&(J~) (for Ji is U- 
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closed by [ 1, Proposition 4.11). Thus f E J and this completes the proof that J is CT- 

closed. Now, it is easy to see that this implies that T/J is a U-reflexive right T- 

module. Furthermore, since by Theorem 2, Ur is injective, it clearly follows that 

each U-cogenerated quotient of U is U-reflexive. 

(iii) G. (i) Since each simple right T-module is U-reflexive and hence U-co- 

generated, it is enough to prove that U, is injective. Let J be a right ideal of T with 

inclusion j : J+ T. Since T/J is U-reflexive, J is U-closed and hence JG (U/&(J))*. 

But U/&(J) is also U-reflexive by hypothesis, so that we get J*r U/&J) and 

therefore we have a commutative diagram: 
‘* J 

U-J* 

U - U/&(J) 

with the vertical arrows isomorphisms, which shows that j* is an epimorphism and 

hence U, is injective. 0 

Remarks. The artinian injective modules RU which cogenerate an exact torsion 

theory of R-Mod considered in [4, Theorem 2.81, obviously satisfy all the conditions 

in (ii) of Theorem 10, so that U, is an injective cogenerator in this case, as claimed 

in the remarks following Theorem 2. 
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